Causal inference in Observational Time Series

E. Devijver C. K. Assaad, E. Gaussier, G. Gössler, A. Meynaoui, L. Zan

> CNRS, Université Grenoble Alpes, France Chaire Causalité, MIAI Institute

> > October 19, 2023

▲□▶ ▲□▶ ★ 三▶ ★ 三▶ - 三 - のへで

(A) Cow: 0.99, Pasture: 0.99, Grass: 0.99, No Person: 0.98, Mammal: 0.98

(B) No Person: 0.99, Water: 0.98, Beach: 0.97, Outdoors: 0.97, Seashore: 0.97

(C) No Person: 0.97, Mammal: 0.96, Water: 0.94, Beach: 0.94, Two: 0.94

Lack of generalization for ML models

Correlation is not causation

イロト イロト イヨト イヨト

- Lack of generalization for ML models
- Correlation is not causation
- Want to answer causal questions
 - Counterfactual: Would my grandfather still be alive if he was vegetarian?
 - Intervention: How would my expected lifespan change if I become a vegetarian?
 - Association: What is the expected lifespan of somebody who is vegetarian?

イロト イポト イヨト イヨト

- Lack of generalization for ML models
- Correlation is not causation
- Want to answer causal questions

Outline

Why causality?

Causal graphs for time series

Causal discovery

Classical Assumptions Granger Causality Constraint-based approaches Noise-based approaches Hybrid approaches

Causal reasoning

Intervention Problem statement Identifiability in FTCG and ECG Identifiability in SCG

Conclusion, perspectives and references

ヘロト 人間 ト 人 ヨト 人 ヨトー

3

Causal graphs for time series

Full time causal graph.

A *d*-variate time series XFor a fixed *t*, each X_t is a vector (X_t^1, \ldots, X_t^d) , in which X_t^p is the measurement of the *p*th time series at time *t*.

・ロト ・回ト ・ヨト ・ヨト

Causal graphs for time series

Full time causal graph.

A *d*-variate time series XFor a fixed *t*, each X_t is a vector (X_t^1, \ldots, X_t^d) , in which X_t^p is the measurement of the *p*th time series at time *t*.

A causal graph for a multivariate time series X is said to be consistent throughout time if all the causal relationships remain constant in direction throughout time.

Causal graphs for time series

Full time causal graph.

Summary Causal Graph

Extended Summary Causal Graph

5/34

Outline

Why causality?

Causal graphs for time series

Causal discovery

Classical Assumptions Granger Causality Constraint-based approaches Noise-based approaches Hybrid approaches

Causal reasoning

Intervention Problem statement Identifiability in FTCG and ECG Identifiability in SCG

Conclusion, perspectives and references

ヘロト 人間 ト 人 ヨト 人 ヨトー

3

Causal discovery¹

¹C. K. Assaad, E. Devijver, and E. Gaussier. *Survey and evaluation of causal discovery methods for time series.* JAIR, 73; 2022. → (=)→(=)→(=)→(=)→(?)/7/34 E. Devijver C. K. Assaad, E. Gaussier, G. Gössler, A. Meynaoui, L. Zan

Causal discovery¹

¹C. K. Assaad, E. Devijver, and E. Gaussier. *Survey and evaluation of causal discovery methods for time series.* JAIR, 73; 2022. → (=)→(=)→(=)→(=)→(?)/7/34 E. Devijver C. K. Assaad, E. Gaussier, G. Gössler, A. Meynaoui, L. Zan

Classical Assumptions

- A set of variables is said to be *causally sufficient* if all common causes of all variables are observed.
- A causal relation between two variables is said to satisfy the temporal priority if it is oriented in such a way that the cause occurred before its effect.
- Causal Markov Condition: (conditional) independence in the graph leads to (conditional) independence in the data.

 $X_t^1 \perp X_t^2 \mid X_{t-}^1$

ヘロン 人間 とくほとう ほとう

Classical Assumptions

- A set of variables is said to be *causally sufficient* if all common causes of all variables are observed.
- A causal relation between two variables is said to satisfy the temporal priority if it is oriented in such a way that the cause occurred before its effect.
- Causal Markov Condition: (conditional) independence in the graph leads to (conditional) independence in the data.
- Minimality condition: the graph does not contain dependencies not present in the observational data.
- Faithfulness: only the conditional independence relations true in the data are entailed by the Causal Markov condition applied to the graph.

Causal discovery Granger Causality²

Granger Causality²

 X^p Granger-causes X^q if past values of X^p provide unique statistically significant information about future values of X^q .

Pairwise Granger causality

Figure: Running example: structure inferred by the pairwise Granger method (an arbitrary order has been chosen for the example).

Granger Causality²

 X^p Granger-causes X^q if past values of X^p provide unique statistically significant information about future values of X^q .

Pairwise Granger causality

Figure: Running example: structure inferred by the pairwise Granger method (an arbitrary order has been chosen for the example).

Granger Causality²

 X^p Granger-causes X^q if past values of X^p provide unique statistically significant information about future values of X^q .

Pairwise Granger causality

Figure: Running example: structure inferred by the pairwise Granger method (an arbitrary order has been chosen for the example).

Granger Causality²

 X^p Granger-causes X^q if past values of X^p provide unique statistically significant information about future values of X^q .

Pairwise Granger causality

Step 6

Figure: Running example: structure inferred by the pairwise Granger method (an arbitrary order has been chosen for the example).

Causal discovery Granger Causality

Multivariate Granger causality

$$X_{t}^{q} = a_{q,0} + \sum_{\substack{r=1 \ r \neq p}}^{d} \sum_{i=1}^{\tau} a_{r,i} X_{t-i}^{p} + \xi_{t}^{q}, \qquad (mvMres)$$
$$X_{t}^{q} = a_{q,0} + \sum_{r=1}^{d} \sum_{i=1}^{\tau} a_{r,i} X_{t-i}^{r} + \xi_{t}^{q}, \qquad (mvMfull)$$

◆□▶ < @ ▶ < E ▶ < E ▶ E のQ @ 10/34</p>

Extensions

- Non-linear associations
- Nonstationnarity

Constraint-based approaches

< □ ▶ < @ ▶ < \ > ▶ \ \ \ = ▶ \ \ = かへで 11/34

Constraint-based approaches

- Exploiting conditional independencies to build a skeleton
- Skeleton is oriented according to a set of rules that define constraints on admissible orientations.

◆□▶ < @ ▶ < E ▶ < E ▶ E のQ ○ 11/34</p>

Constraint-based approaches

- Exploiting conditional independencies to build a skeleton
- Skeleton is oriented according to a set of rules that define constraints on admissible orientations.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨーのへで 11/34

Assumptions

- Causal Markov Condition
- Faithfulness

Constraint-based approaches

Structures with 3 nodes

 $X^p \not X^q | X^r$

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

Constraint-based approaches

Structures with 3 nodes $X^p \not\perp X^q | X^r$

X^p X^r

Markov equivalence class: set of DAGs that encode the same set of conditional independencies.

イロト イロト イヨト イヨト

æ

Constraint-based approaches

Main difficulty when dealing with time series: determine a good measure of (conditional) dependencies

- Measure : (partial) correlation, entropy, mutual information ...
- Estimation
- Type of data (continuous, discrete, mixed)

Representation of the time series

Optimal lag γ_{pq} and $(\lambda_{pq}, \lambda_{qp})$ the optimal windows:

$$\gamma_{pq}, \lambda_{pq}, \lambda_{qp} = \underset{\gamma \ge 0, \lambda_1, \lambda_2}{\operatorname{argmax}} h(X_{t:t+\lambda_2}^q \mid X_{t-1}^q, X_{t-\gamma-1}^p) \\ - h(X_{t:t+\lambda_2}^q \mid X_{t-\gamma-1:t-\gamma+\lambda_1}^p, X_{t-1}^q).$$

◆□▶ ◆母▶ ◆ ミ▶ ◆ ミ▶ ミークへで 13/34

where h denotes the entropy.

Constraint-based approaches: PCMCI³ to discover a window causal graph

Figure: Running example: structure inferred by PCMCI with instantaneous relations.

³Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5(11).

Constraint-based approaches: PCMCI³ to discover a window causal graph

Figure: Running example: structure inferred by PCMCI with instantaneous relations.

³Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5(11).

Constraint-based approaches: PCMCI³ to discover a window causal graph

Figure: Running example: structure inferred by PCMCI with instantaneous relations.

³Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5(11).

Constraint-based approaches: PCMCI³ to discover a window causal graph

Figure: Running example: structure inferred by PCMCI with instantaneous relations.

³Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5(11).

Constraint-based approaches: PCMCI³ to discover a window causal graph

Figure: Running example: structure inferred by PCMCI with instantaneous relations.

³Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5(11).

Constraint-based approaches: PCGCE⁴ to discover an extended summary causal graph

Assumptions

- Causal Markov condition
- Faithfulness
- Causal sufficiency for PCGCE (but extension to FCIGCE)

⁴C. K. Assaad, E. Devijver, and E. Gaussier. *Causal Discovery of Extended Summary Graphs in Time Series*, UAI 2022 ← D → ← (B) → ← (E) → (E) → (C) →

Constraint-based approaches: PCGCE⁴ to discover an extended summary causal graph

Assumptions

- Causal Markov condition
- Faithfulness
- Causal sufficiency for PCGCE (but extension to FCIGCE)

Measure: need a specific one due to the graph structure Proposed Greedy Causation Entropy (GCE)

$$\begin{aligned} \mathsf{GCE}(X^p \to X^q | X^{\mathsf{Pa}}, X^{\mathsf{Pr}}) \\ := & \mathsf{I}(X^q_t; X^p_{t-\gamma:t-1} | X^{\mathsf{Pa}}_{t-}, \cdots, X^{\mathsf{Pa}}_{t-}, X^{\mathsf{Pr}}_t, \cdots, X^{\mathsf{Pr}}_t) \end{aligned}$$

⁴C. K. Assaad, E. Devijver, and E. Gaussier. *Causal Discovery of Extended Summary Graphs in Time Series*, UAI 2022 ← D → ← (B) → ← (E) → (E) → (C) →

Constraint-based approaches: PCGCE⁵ to discover an extended summary causal graph

Figure: Running example: structure inferred by PCGCE with instantaneous relations.

⁵C. K. Assaad, E. Devijver, and E. Gaussier. *Causal Discovery of Extended Summary Graphs in Time Series*, UAI 2022 ← □ → ← (□) → ← (□) → (

Constraint-based approaches: PCGCE⁵ to discover an extended summary causal graph

Figure: Running example: structure inferred by PCGCE with instantaneous relations.

⁵C. K. Assaad, E. Devijver, and E. Gaussier. *Causal Discovery of Extended Summary Graphs in Time Series*, UAI 2022 ← → ← ((D) → (

Constraint-based approaches: PCGCE⁵ to discover an extended summary causal graph

Figure: Running example: structure inferred by PCGCE with instantaneous relations.

⁵C. K. Assaad, E. Devijver, and E. Gaussier. *Causal Discovery of Extended Summary Graphs in Time Series*, UAI 2022 ← → ← ((D) → (
Constraint-based approaches: PCGCE⁵ to discover an extended summary causal graph

Figure: Running example: structure inferred by PCGCE with instantaneous relations.

⁵C. K. Assaad, E. Devijver, and E. Gaussier. *Causal Discovery of Extended Summary Graphs in Time Series*, UAI 2022 ← → ← ((D) → (

Constraint-based approaches: PCGCE⁵ to discover an extended summary causal graph

Figure: Running example: structure inferred by PCGCE with instantaneous relations.

⁵C. K. Assaad, E. Devijver, and E. Gaussier. *Causal Discovery of Extended Summary Graphs in Time Series*, UAI 2022 ← → ← ((D) → (

Noise-based approaches

E. Devijver C. K. Assaad, E. Gaussier, G. Gössler, A. Meynaoui, L. Zan

Causal discovery Noise-based approaches

- Causal system described by a set of equations (SEM/SCM)
- each equation explains one variable of the system in terms of its direct causes and some additional noise.

◆□▶ ◆母▶ ◆ ミ▶ ◆ ミ▶ ミーク へ ○ 17/34

- Causal system described by a set of equations (SEM/SCM)
- each equation explains one variable of the system in terms of its direct causes and some additional noise.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへぐ…

Assumptions

- Causal Markov Condition
- Minimality

Can deal with 2 variables

Noise-based approaches: Additive Noise Models

Additive noise model with nonlinear functions

$$X^p = \tilde{\xi}^p,$$

 $X^q = f_q(X^p) + \tilde{\xi}^q \quad \text{with } X^p \underline{\parallel} \tilde{\xi}_q.$

(4 個) トイヨト イヨト

E. Devijver C. K. Assaad, E. Gaussier, G. Gössler, A. Meynaoui, L. Zan

Noise-based approaches: Additive Noise Models

Additive noise model with nonlinear functions

$$X^p = \tilde{\xi}^p,$$

 $X^q = f_q(X^p) + \tilde{\xi}^q \quad \text{with } X^p \underline{\parallel} \tilde{\xi}_q.$

• • = • • = •

E. Devijver C. K. Assaad, E. Gaussier, G. Gössler, A. Meynaoui, L. Zan

Noise-based approaches: Additive Noise Models

Additive noise model with nonlinear functions

$$egin{aligned} X^p &= \xi^p, \ X^q &= f_q(X^p) + \xi^q \qquad ext{with } X^p lacksquare \xi_q. \end{aligned}$$

Theorem (Identifiability of ANMs⁶)

Assume that the conditional distribution of $X^q \mid X^p$ admits a smooth ANM, and that there exists $x_q \in \mathbb{R}$ such that, for almost all $x_p \in \mathbb{R}$,

$$(\log p_{\xi^q})''(x_q - f_q(x_p))f_q'(x_p) \neq 0.$$

Then, the set of log densities $\log p_X$ for which the obtained joint distribution P_{X^p,X^q} admits a smooth ANM from X^q to X^p is contained in a 3-dimensional affine space.

⁶Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., Schölkopf, B. *Nonlinear causal discovery with additive noise models*. NeurIPS 2009 (≥) (

Noise-based approaches: Additive Noise Models

Additive noise model with nonlinear functions

$$X^p = \xi^p,$$

 $X^q = f_q(X^p) + \xi^q \quad \text{with } X^p \underline{\parallel} \xi_q.$

Principle (Multivariate additive noise principle)

Suppose we are given a joint distribution $P(X^1, \dots, X^d)$. If it satisfies an identifiable Additive Noise Model such that $\{(X_{t-j}^p)_{1 \le p \ne q \le d, 0 \le j \le \tau}, (X_{t-j}^q)_{1 \le j \le \tau}\} \to X^q$, then it is likely that $\{(X_{t-j}^p)_{1 \le p \ne q \le d, 0 \le j \le \tau}, (X_{t-j}^q)_{1 \le j \le \tau}\}$ precedes X^q in the causal order.

◆□▶ ◆母▶ ◆ ミ▶ ◆ ミ▶ ミークへで 18/34

Noise-based approaches: VarLINGAM⁶

Figure: Running example: structured inferred by VarLiNGAM.

Noise-based approaches: VarLINGAM⁶

Figure: Running example: structured inferred by VarLiNGAM.

Noise-based approaches: VarLINGAM⁶

Figure: Running example: structured inferred by VarLiNGAM.

Noise-based approaches: VarLINGAM⁶

Figure: Running example: structured inferred by VarLiNGAM.

Noise-based approaches: VarLINGAM⁶

Figure: Running example: structured inferred by VarLiNGAM.

Noise-based approaches: VarLINGAM⁶

Figure: Running example: structured inferred by VarLiNGAM.

NBCB7: a mix between noise-based and constraint-based approaches

⁷C. K. Assaad, E. Devijver, and E. Gaussier. A Mixed Noise and Constraint Based Approach to Causal Inference in Time Series; E©MLPKDD 2021 ₹ - DQC 20/34 E. Devijver C. K. Assaad, E. Gaussier, G. Gössler, A. Meynaoui, L. Zan

NBCB7: a mix between noise-based and constraint-based approaches

Assumptions

- Causal Markov Condition
- Adjacency faithfulness: if X^p and X^q are adjacent, then they are not conditionally independent given any subset of vertices except Xp, Xq.
- Minimality

⁷C. K. Assaad, E. Devijver, and E. Gaussier. A Mixed Noise and Constraint Based Approach to Causal Inference in Time Series; ECMLPKDD 2021 = ∽ ۹.° 20/34 E. Devijver C. K. Assaad, E. Gaussier, G. Gössler, A. Meynaoui, L. Zan

NBCB7: a mix between noise-based and constraint-based approaches

Assumptions

- Causal Markov Condition
- Adjacency faithfulness: if X^p and X^q are adjacent, then they are not conditionally independent given any subset of vertices except Xp, Xq.
- Minimality

Step 1: causal ordering (additive noise model) Last place: time series which yields the residuals that are more independent to the other time series.

Step 2: pruning to remove spurious relations based on (conditional) independence measure.

⁷C. K. Assaad, E. Devijver, and E. Gaussier. *A Mixed Noise and Constraint* Based Approach to Causal Inference in Time Series, ECMLPKDD 2021 2000 20/3

NBCB: a mix between noise-based and constraint-based approaches

Figure: Running example: structured inferred by NBCB.

NBCB: a mix between noise-based and constraint-based approaches

Figure: Running example: structured inferred by NBCB.

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q C 21/34

NBCB: a mix between noise-based and constraint-based approaches

Figure: Running example: structured inferred by NBCB.

NBCB: a mix between noise-based and constraint-based approaches

Figure: Running example: structured inferred by NBCB.

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q C 21/34

NBCB: a mix between noise-based and constraint-based approaches

Figure: Running example: structured inferred by NBCB.

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q C 21/34

NBCB: a mix between noise-based and constraint-based approaches

Figure: Running example: structured inferred by NBCB.

Outline

Why causality?

Causal graphs for time series

Causal discovery

Classical Assumptions Granger Causality Constraint-based approaches Noise-based approaches Hybrid approaches

Causal reasoning

Intervention Problem statement Identifiability in FTCG and ECG Identifiability in SCG

Conclusion, perspectives and references

イロト イポト イヨト イヨト 一日

Intervention

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - のへで、

Causal reasoning Problem Statement

Estimating without bias the total effect of an intervention

$$P(Y_t = y_t | do(X_{t-\gamma} = x_{t-\gamma})) = P(y_t | do(x_{t-\gamma})).$$

Experimentation? Can be costly, unethical or even unfeasible.Directly from observational data? Identifiability

The total effect $P(y_t | do(x_{t-\gamma}))$ is said to be *identifiable* from a graph if it can be uniquely computed from the observed distribution, without any further assumption on the distribution.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E ⑦ Q ♀ 24/34</p>

Problem Statement

Example: back-door criterion

Consider a causal graph and the total effect P(y|do(x)). Let \mathcal{Z} a set of variables with no descendant of X and that blocks every path between X and Y that contains an arrow into X. Then, if P(x, z) > 0,

$$P(y|do(x)) = \sum_{z} P(y|x, z) P(z).$$

イロト イポト イヨト イヨト 一日

Causal reasoning Identifiability in FTCG and ECG

Assumptions: causal sufficiency, consistency throughout time.

Theorem 1⁸: Consider an FTCG \mathcal{G}^{f} (or equivalently a WCG). The total effect $P(y_t|do(x_{t-\gamma}))$, with $\gamma \geq 0$ is identifiable in \mathcal{G}^{f} .

◆□▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 26/34</p>

Theorem 2: Consider an ECG \mathcal{G}^e . The total effect $P(y_t | do(x_{t-\gamma}))$, with $\gamma \ge 0$ is identifiable in \mathcal{G}^e .

⁸Blondel et al. 2016,Shpitser et al. 2008

Causal reasoning Identifiability in SCG⁹

Assumptions: causal sufficiency, consistency throughout time.

Theorem 3: Consider an SCG $\mathcal{G}^s = (\mathcal{V}^s, \mathcal{E}^s)$. The total effect $P(y_t | do(x_{t-\gamma}))$, with $\gamma \ge 0$, is not identifiable if and only if $X \in Anc(Y, \mathcal{G}^s)$ and one of the following holds:

$$\begin{array}{l} \gamma \neq 1, \text{ or} \\ \gamma \neq 1, \text{ or} \\ \gamma = 1, n = 2 \text{ and } Cycles(Y, \mathcal{G}^{s} \setminus \{X\}) \neq \emptyset. \end{array}$$

⁹A. Meynaoui et al., *Identifiability of total effects from abstractions of time series causal graphs*, submitted

Identifiability in SCG: non identifiable example 1

Another FTCG compatible with the SCG \mathcal{G}_1^s .

イロト イロト イヨト イヨト

かくで 28/34

3

Identifiability in SCG: non identifiable example 2

か^へ^つ 29/34

э

イロト イポト イヨト イヨト

Identifiability in SCG: identifiable examples

イロト イポト イヨト イヨト 二日

30/34

Outline

Why causality?

Causal graphs for time series

Causal discovery

Classical Assumptions Granger Causality Constraint-based approaches Noise-based approaches Hybrid approaches

Causal reasoning

Intervention Problem statement Identifiability in FTCG and ECG Identifiability in SCG

Conclusion, perspectives and references

イロト イポト イヨト イヨト 一日

Conclusion and perspectives

- Which causal graph do we want to infer?
- The representation of time series is essential (windows lags)
- Many families to discover causal graph for time series (also score-based, logic-based, topology-based, difference-based)

◆□▶ ◆課 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへで、

Hybrid methods can take benefit of several worlds

Conclusion and perspectives

- Which causal graph do we want to infer?
- The representation of time series is essential (windows lags)
- Many families to discover causal graph for time series (also score-based, logic-based, topology-based, difference-based)
- Hybrid methods can take benefit of several worlds
- Stationarity assumption for time series? Ongoing work with L. Zan

- Estimation of total effects?
- Counterfactual analysis?
References (Causal discovery)

- P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT press, 2000.
- C. K. Assaad, E. Devijver, and E. Gaussier. A Mixed Noise and Constraint Based Approach to Causal Inference in Time Series, ECMLPKDD 2021
- C. K. Assaad, E. Devijver, and E. Gaussier. Survey and evaluation of causal discovery methods for time series. JAIR, 73, 2022.
- C. K. Assaad, E. Devijver, and E. Gaussier. Causal Discovery of Extended Summary Graphs in Time Series, UAI 2022
- L. Zan, A. Meynaoui, C.K. Assaad, E. Devijver, E. Gaussier, A Conditional Mutual Information Estimator for Mixed Data and an Associated Conditional Independence Test, Entropy 2022

イロト イポト イヨト イヨト 一日

References (Causal reasoning)

- Shpitser, I. and Pearl, J., Complete identification methods for the causal hierarchy, JMLR 2008
- G. Blondel, M. Arias, R. Gavalda, *Identifiability and transportability in dynamic causal networks*, International Journal of Data Science and Analytics, 2016
- Perkovic, E., Identifying causal effects in maximally oriented partially directed acyclic graphs, UAI 2020
- A. Meynaoui, C. K. Assaad, E. Devijver, E. Gaussier, G. Gössler, *Identifiability of total effects from abstractions of time series causal graphs*, submitted