Early Classification and Transfer Learning Challenges in Large-scale Crop Type Mapping

Marc Rußwurm – Assistant Professor in Machine Learning for Remote Sensing

Time series and transfer learning workshop, 19th of October, Paris

Outline

Importance of time series for large-scale vegetation monitoring

Early Time Series Classification

Transfer Learning and Challenges

we live in a temporal-dyanamic world

observe it with data from satellites, airplanes, UAVs

finding methods to analyzing this time series data is crucial

to **extract meaningful** information from this available data

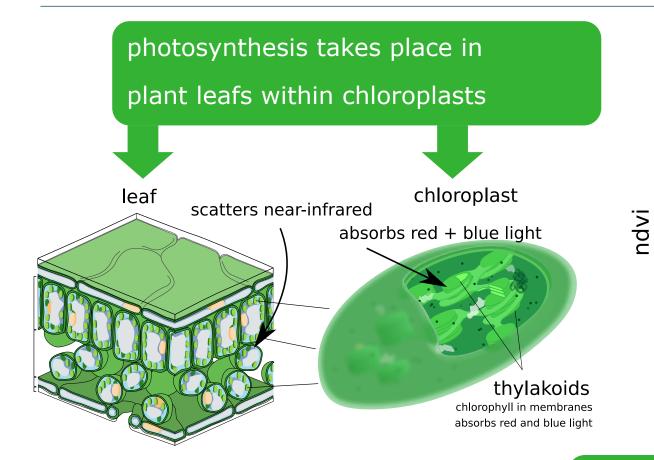
OCT 2000 APR

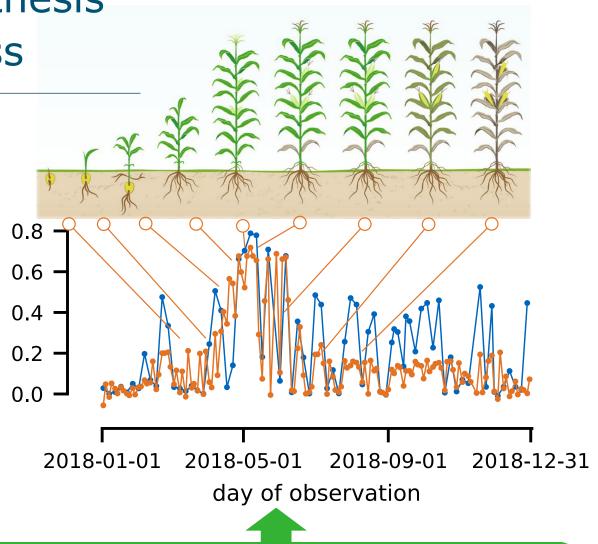
JUL

Normalized Difference Vegetation Index (NDVI) Collected by MODIS on NASA's Terra Satellite

Imagery Products: MODIS Science Team Data: NASA MODIS Vegetation Indices (MOD13C1) Source Code: www.github.com/aaronpenne GIF: Aaron Penne @ 2018

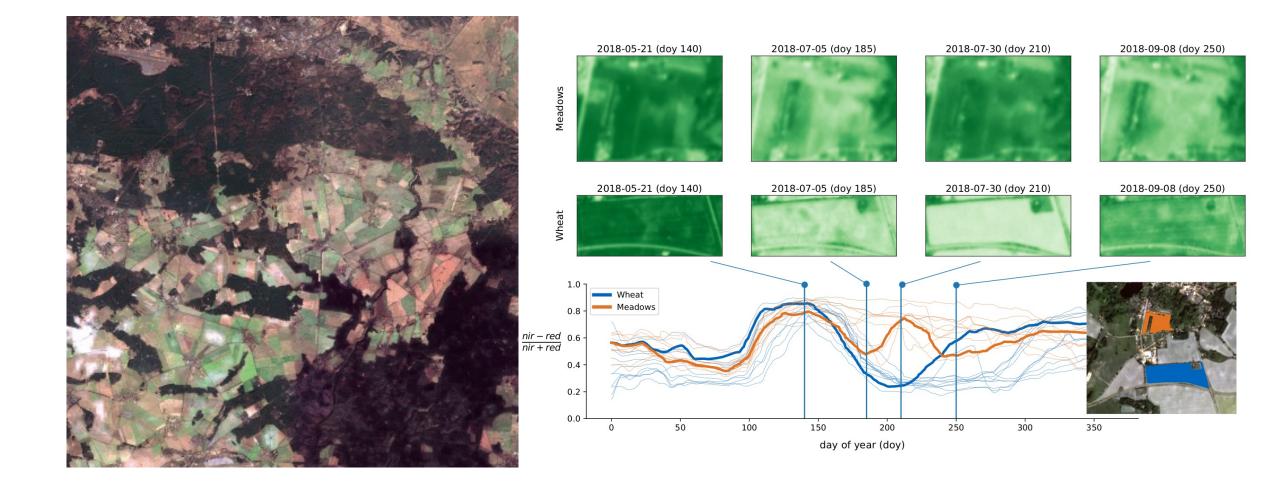
Vegetation relies on photosynthesis to convert light to biomass



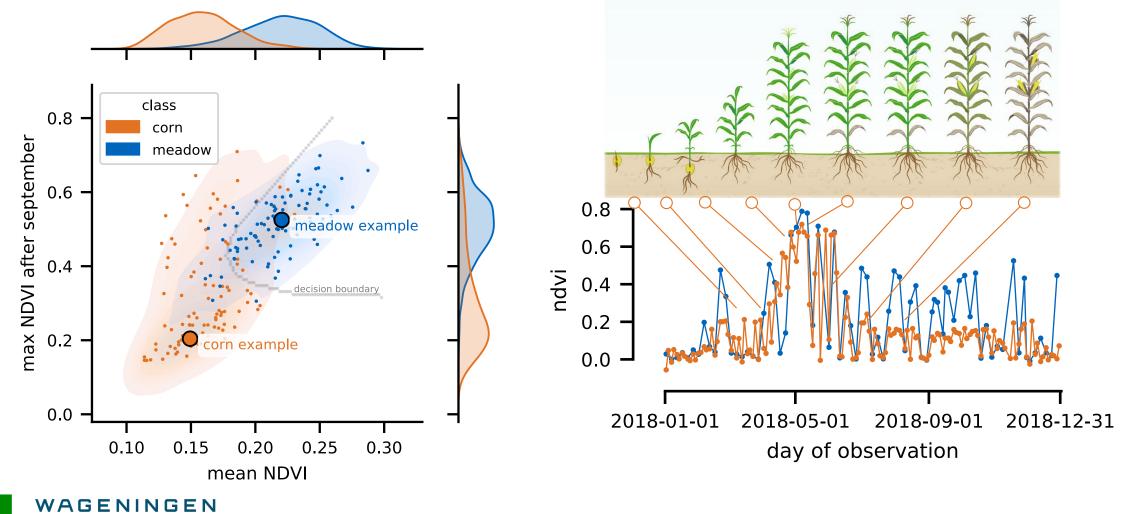


we can measure this red and near-infrared reflectance from satellites in regular time intervals

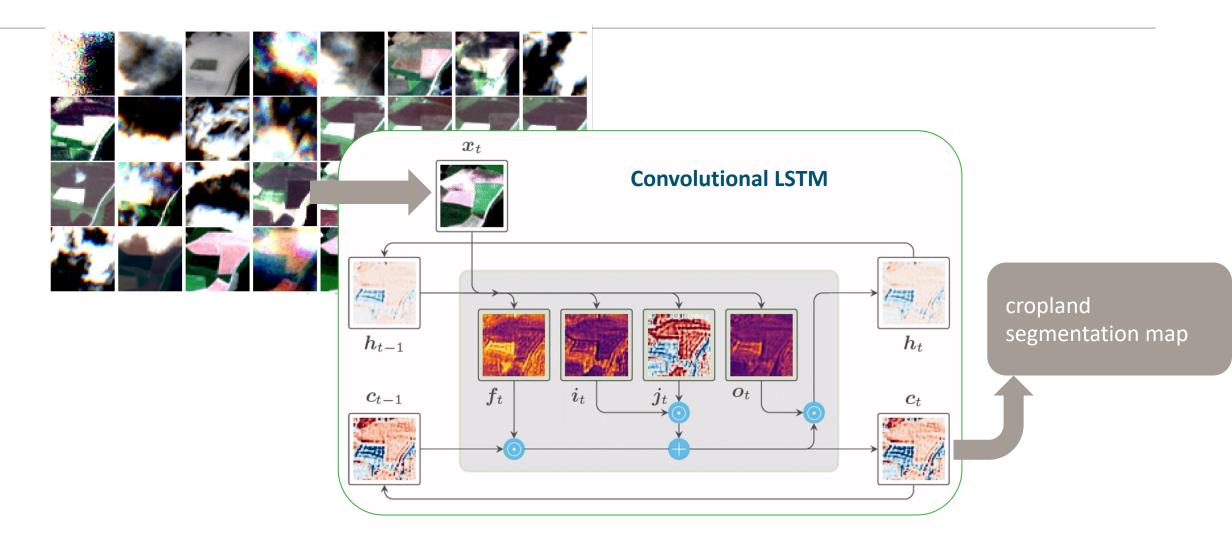
Crop Type Mapping



Crop Type Classification



Long-Short Term Memory (LSTM) Time Series Classifiers



Rußwurm, M., & Körner, M. (2018). Multi-temporal land cover classification with sequential recurrent encoders. ISPRS International Journal of Geo-Information, 7(4), 129.

Self-Attention in (small) Transformer Models

Rußwurm, M., & Körner, M. (2020). Self-attention for raw optical satellite time series classification. *ISPRS journal of photogrammetry and remote sensing*, *169*, 421-435.

Crop Type information in France

Europe:

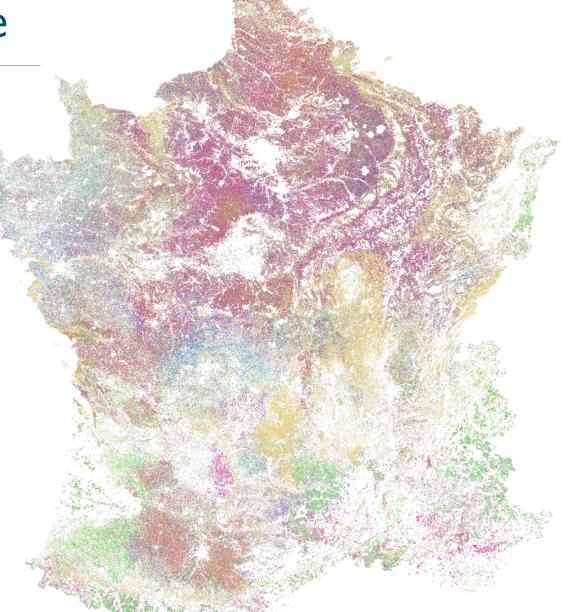
Monitoring european crop subsidy (€386.6 billion 2021-2027)

great data basis to study methods

Globally:

monitoring food security

estimate impact of climate change on agricultural production



10 million field geometries and cultivated crops published each year

With enough data, all deep learning models do well

Bavaria, Germany

(c) Overall accuracy metric 23-class dataset

acc.	RF	LSTM-RNN	Transformer	DuPLO	MS-ResNet	TempCNN
		$0.85^{\pm 0.01} \\ 0.81^{\pm 0.01}$	$ 0.85^{\pm 0.02} \\ 0.80^{\pm 0.02} $		$0.83^{\pm 0.02} \\ 0.79^{\pm 0.03}$	

Brittany, BreizhCrops

(d) Overall accuracy metric 12-class dataset

acc.	RF	LSTM-RNN	Transformer	DuPLO	MS-ResNet	TempCNN
pre raw	0.91 0.80	$0.92^{\pm 0.01} \\ 0.90^{\pm 0.00}$	$0.92^{\pm 0.03}$ $0.89^{\pm 0.01}$		$0.91^{\pm 0.01} \\ 0.87^{\pm 0.01}$	

	shallow	convolution			recurrence		attention	
FRH04 overall accuracy average accuracy weighted f-score	RF 0.78 0.54 0.77	TempCNN 0.79 0.55 0.79	MS-ResNet 0.77 0.54 0.77	InceptionTime 0.77 0.53 0.77	OmniscCNN 0.73 0.52 0.72	LSTM 0.80 0.57 0.80	StarRNN 0.79 0.56 0.79	Transformer 0.80 0.58 0.80
kappa-metric	0.71	0.73	0.70	0.70	0.65	0.74	0.73	0.75
average accuracy weighted f-score	$\begin{array}{c} 0.78^{\pm 0.02} \\ 0.54^{\pm 0.01} \\ 0.77^{\pm 0.02} \\ 0.71^{\pm 0.03} \end{array}$	$\begin{array}{c} 0.57^{\pm 0.01} \\ 0.80^{\pm 0.01} \end{array}$	$0.76^{\pm 0.01}$	$\begin{array}{c} 0.73^{\pm 0.04} \\ 0.52^{\pm 0.01} \\ 0.69^{\pm 0.08} \\ 0.66^{\pm 0.05} \end{array}$	$\begin{array}{c} 0.55^{\pm 0.03} \\ 0.75^{\pm 0.06} \end{array}$	$\begin{array}{c} 0.80^{\pm 0.02} \\ 0.57^{\pm 0.01} \\ 0.80^{\pm 0.03} \\ 0.75^{\pm 0.03} \end{array}$	$\begin{array}{c} 0.56^{\pm 0.00} \\ 0.80^{\pm 0.01} \end{array}$	$0.59^{\pm 0.01}$ $0.81^{\pm 0.01}$

Rußwurm, M., Pelletier, C., Zollner, M., Lefèvre, S., & Körner, M. (2020). BREIZHCROPS: A TIME SERIES DATASET FOR CROP TYPE MAPPING. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 1545-1551.

Whats's left: two **challenges** in this field

1: timely in-season classification

early time series classification

Applicable to other problems, such as

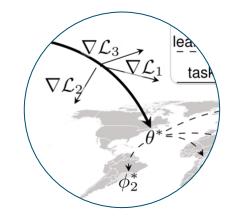
deforestation alerts

AGENINGEN

disaster mapping (change detection)

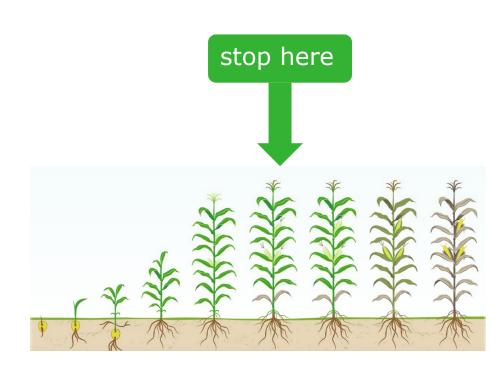
2: transfer learning across regions

domain shift in real-world data



Applicable beyond time series,

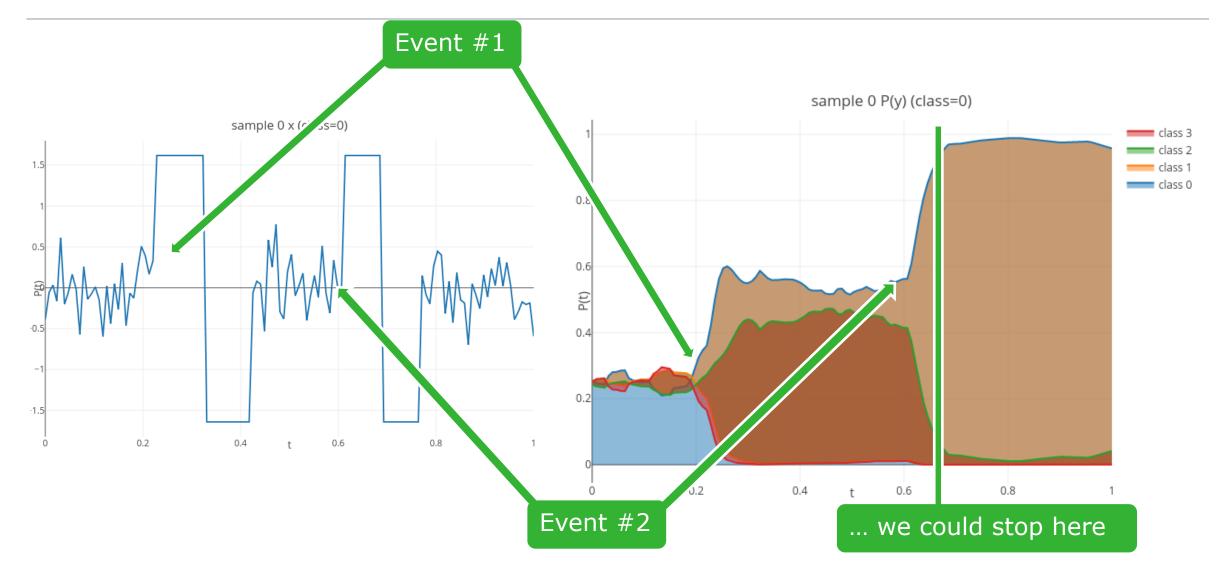
- Iand cover maps
- generalizability reliability beyond the training regions/years



1 Early Time Series Classification

What is Early Classification

TwoPatterns dataset from the Hexagon ML UCR Time Series Classification Archive, Dau et al., 2018



Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi , Chotirat Ann Ratanamahatana, Yanping Chen, Bing Hu, Nurjahan Begum, Anthony Bagnall , Abdullah Mueen, Gustavo Batista, & Hexagon-ML (2019). *The UCR Time Series Classification Archive.*

Early Classification and Selective Prediction

Selective Prediction: The ability to to **abstain** from a **decision** when lacking confidence [1]

- uncertainty based methods through Monte-Carlo Dropout or Model Ensembles
- architecture based methods through a selection head of abstention logit

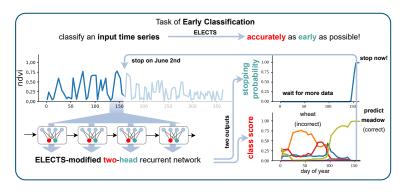
Early Classification:	The accurate classification of time series as early as possible [2]	

 is selective prediction in a time series context: we abstain from taking a decision and wait for more data

[1] Leo Feng, Mohamed Osama Ahmed, Hossein Hajimirsadeghi, and Amir H Abdi. Towards better selective classification. In The Eleventh International Conference on Learning Representations, 2023
[2] Ashish Gupta, Hari Prabhat Gupta, Bhaskar Biswas, and Tanima Dutta. Approaches and applications of early classification of time series: A review. IEEE Transactions on Artificial Intelligence

End-to-end learned early classification of time series

ELECTS-modified LSTM



ISPRS Journal of Photogrammetry and Remote

Sensing Volume 196, February 2023, Pages 445-456

End-to-end learned early classification of time series for in-season crop type mapping

 Marc Rußwurm ^a ♀ ⋈, Nicolas Courty ^b, Rémi Emonet ^c, Sébastien Lefèvre ^b, Devis Tuia ^a,

 Romain Tavenard ^d

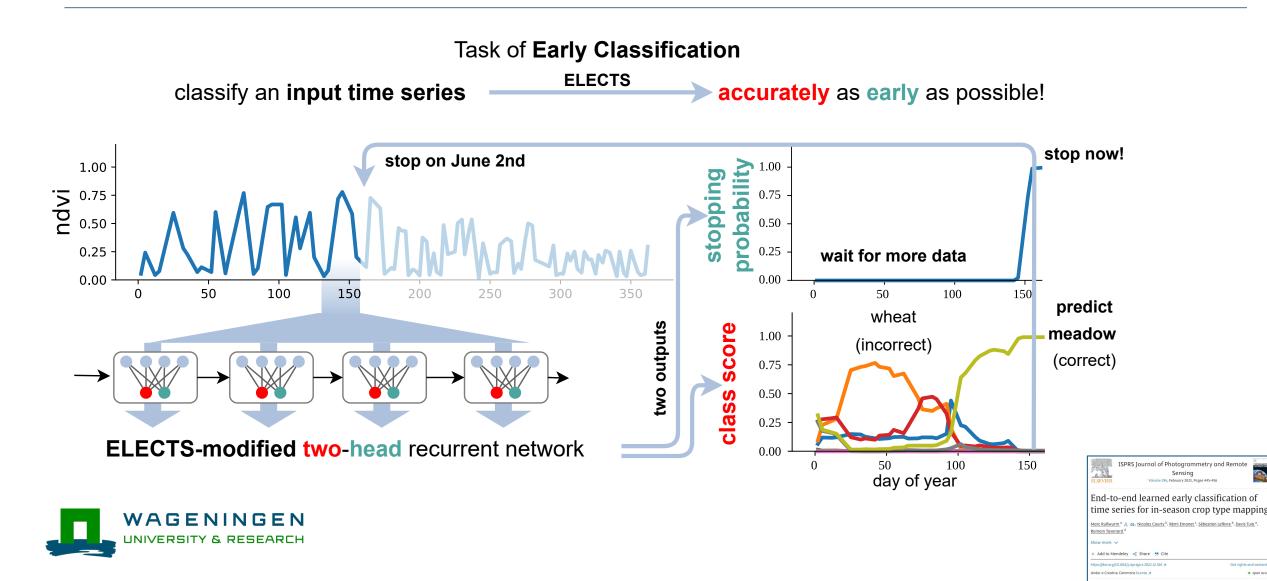
 Show more ∨

 + Add to Mendeley <\$ Share <> Cite

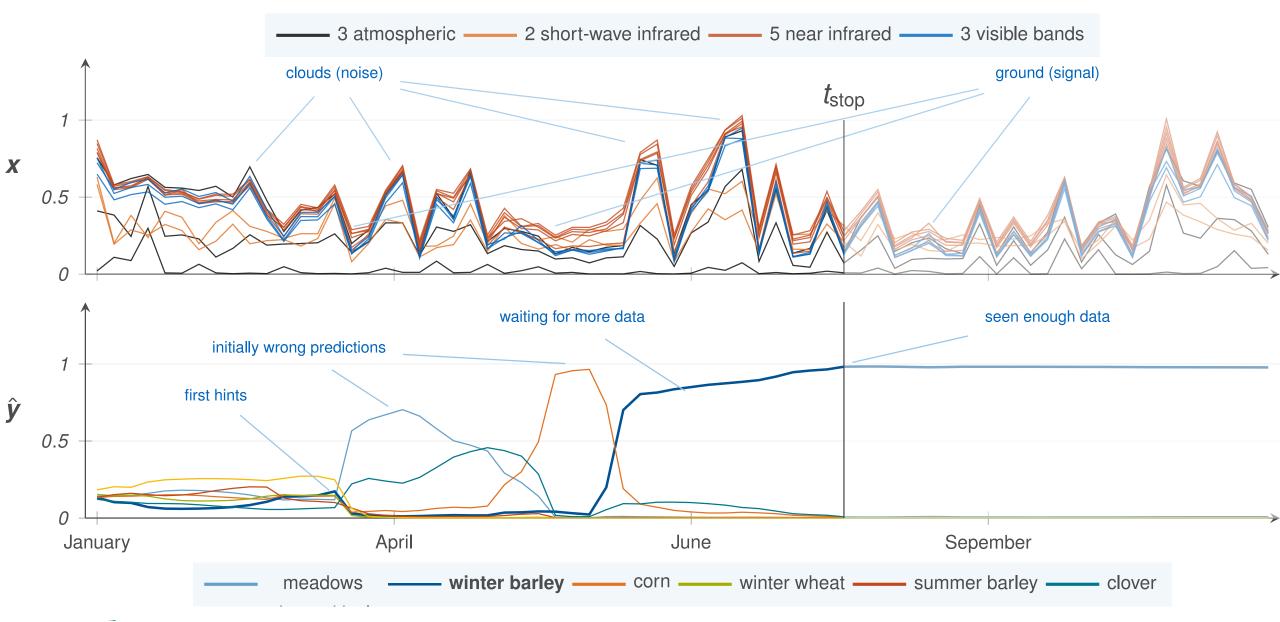
 https://doi.org/10.1016/j.isprsjprs.2022.12.016 <> Get rights and content <> Open access

 • open access

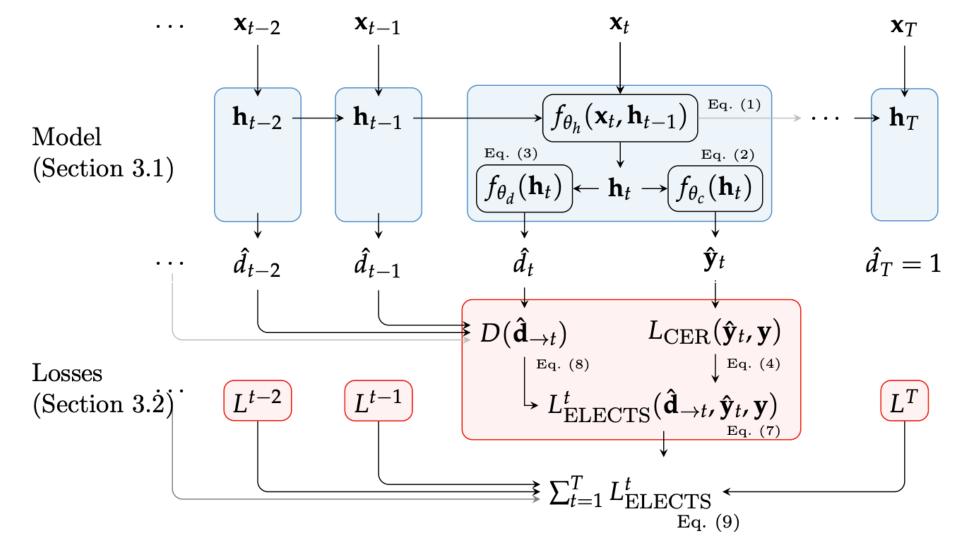
End-to-end learned early classification of time series for in-season crop type mapping

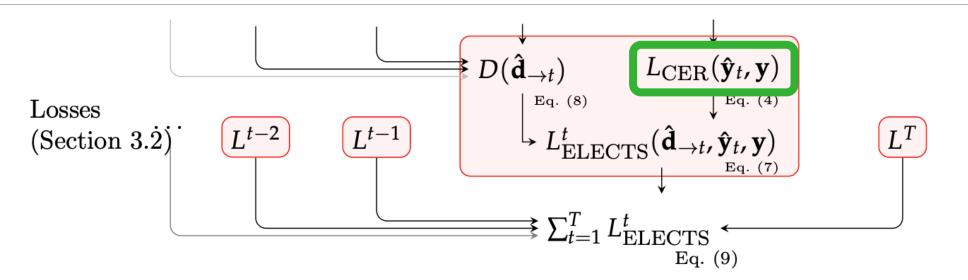


Early Classification of Crop Type from Sentinel-2 time series



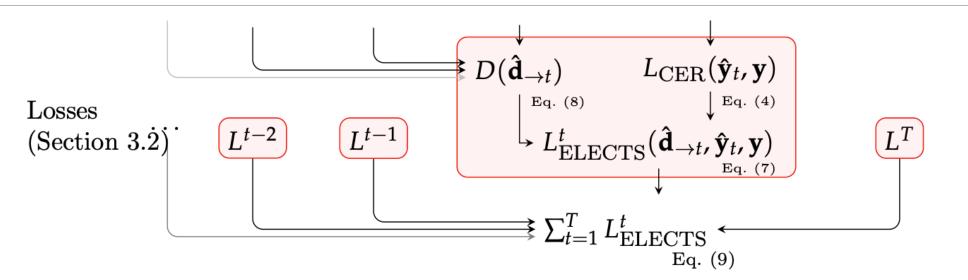
Method: Model and Loss functions





Classification & Early Reward:

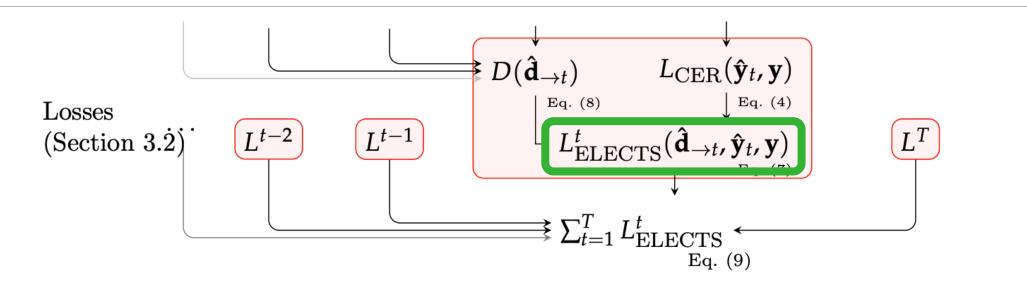
$$L_{\text{CER}}(\hat{\mathbf{y}}_t, \mathbf{y}) = \alpha L_c(\hat{\mathbf{y}}_t, \mathbf{y}) - (1 - \alpha) R_e(\hat{\mathbf{y}}_t, \mathbf{y}, t)$$



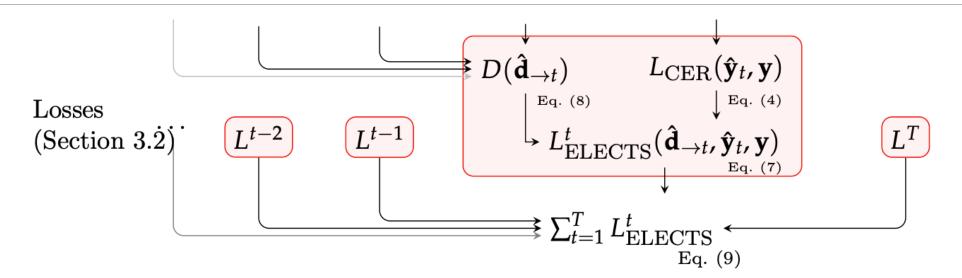
Classification & Early Reward:

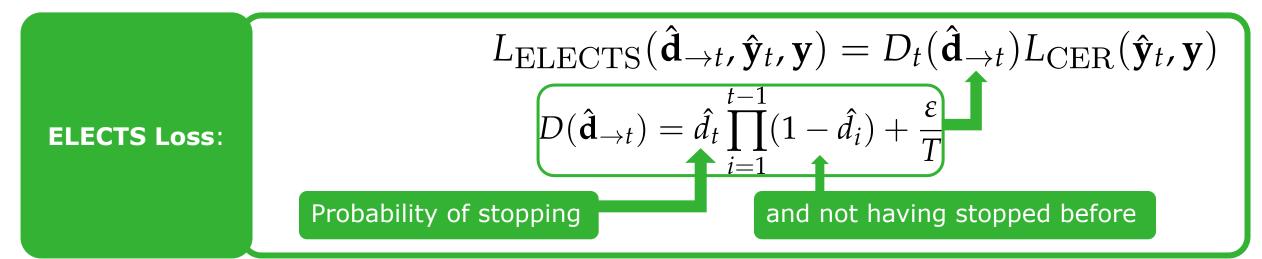
$$L_{CER}(\hat{\mathbf{y}}_t, \mathbf{y}) = \alpha L_c(\hat{\mathbf{y}}_t, \mathbf{y}) - (1 - \alpha) R_e(\hat{\mathbf{y}}_t, \mathbf{y}, t)$$

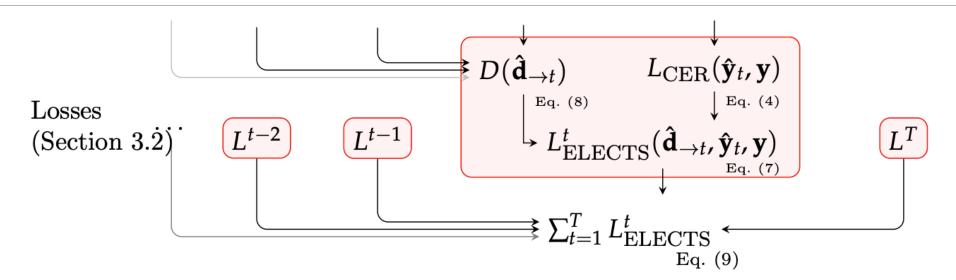
$$L_c(\hat{\mathbf{y}}_t, \mathbf{y}) = -\sum_{c=1}^C y_c \log \hat{y}_{c,t}, R_e(\hat{\mathbf{y}}_t, \mathbf{y}, t) = \hat{y}_t^+ \left(\frac{T - t}{T}\right)$$

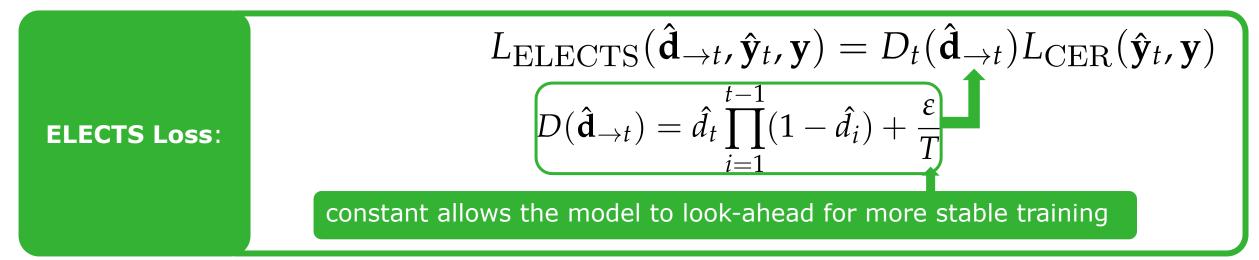


ELECTS Loss: $L_{\text{ELECTS}}(\hat{\mathbf{d}}_{\to t}, \hat{\mathbf{y}}_t, \mathbf{y}) = D_t(\hat{\mathbf{d}}_{\to t})L_{\text{CER}}(\hat{\mathbf{y}}_t, \mathbf{y})$

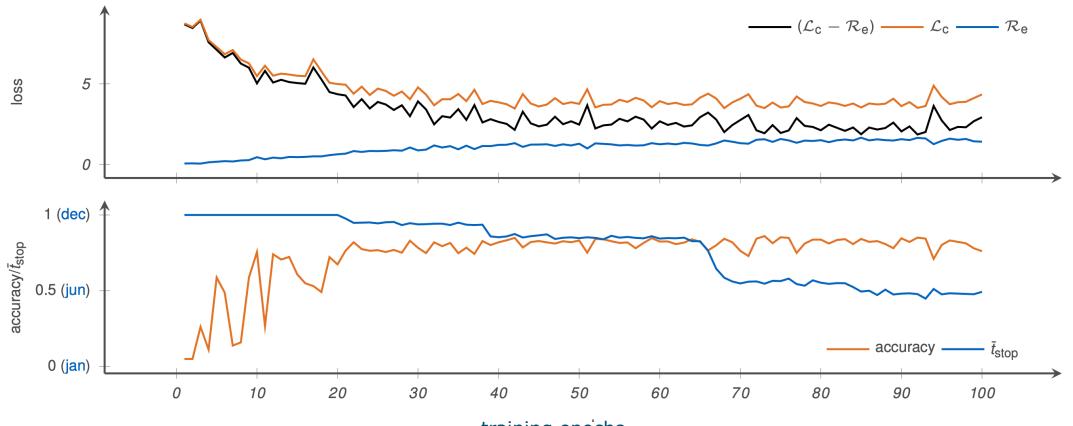






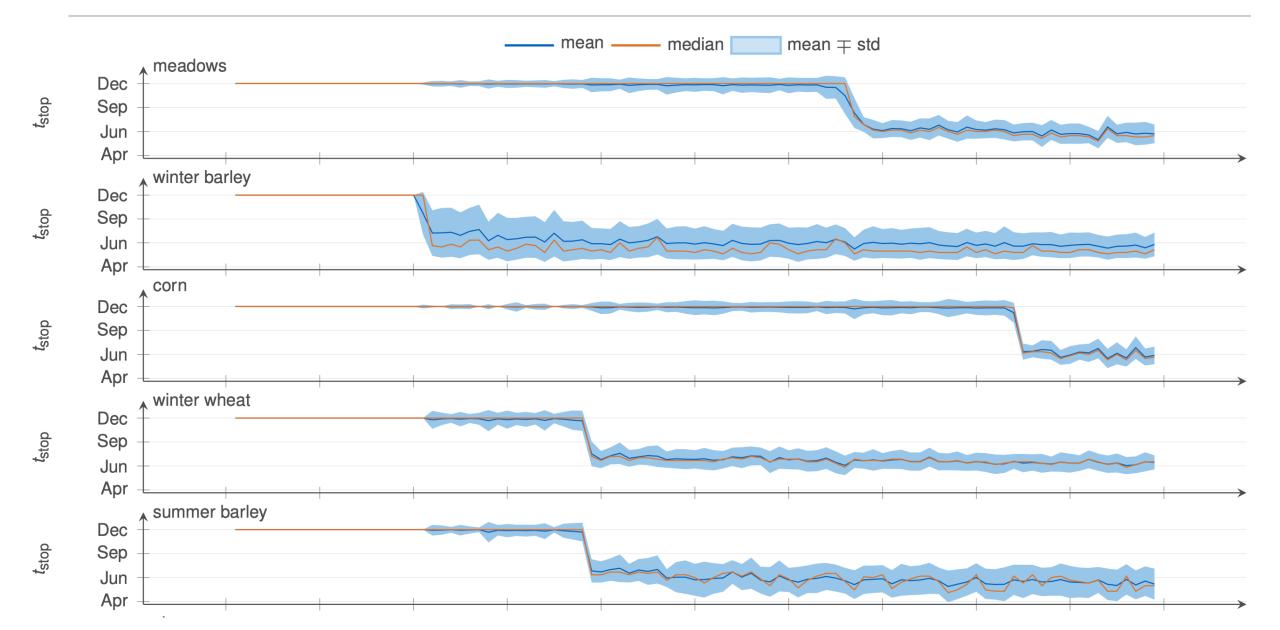


Earliness decreases step-wise during training

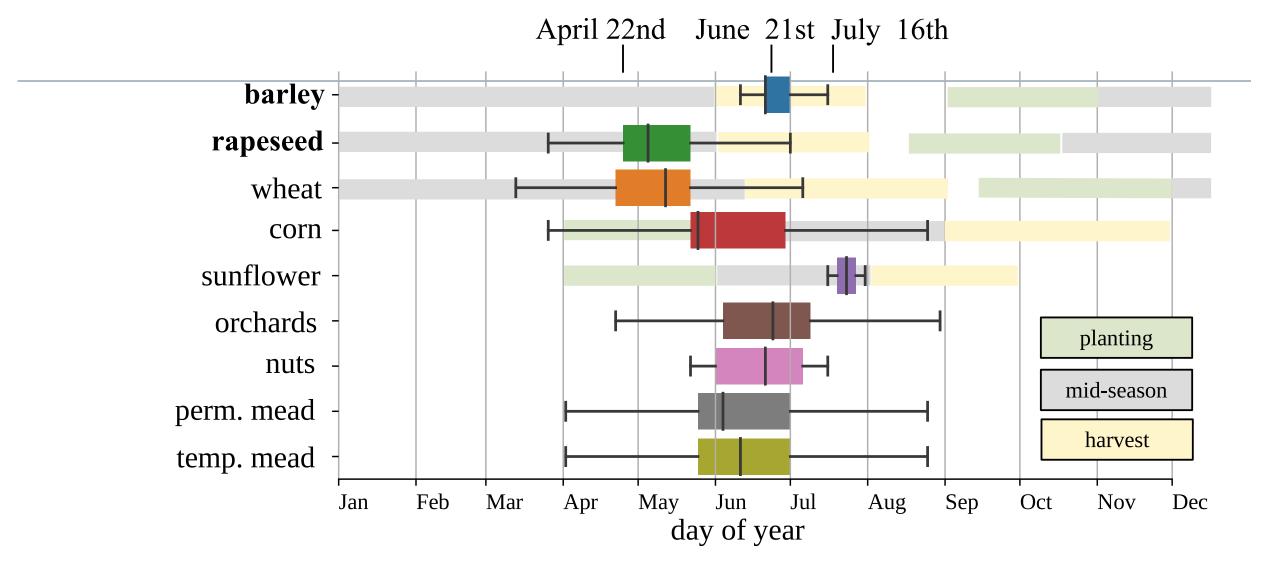


training epochs

Step-wise learning of stopping times per class



Results: Different Crop Types are Stopped at different times



Rapeseed fields are stopped after blossoming

```
2017-04-22
```

2017-06-21

2017-07-16

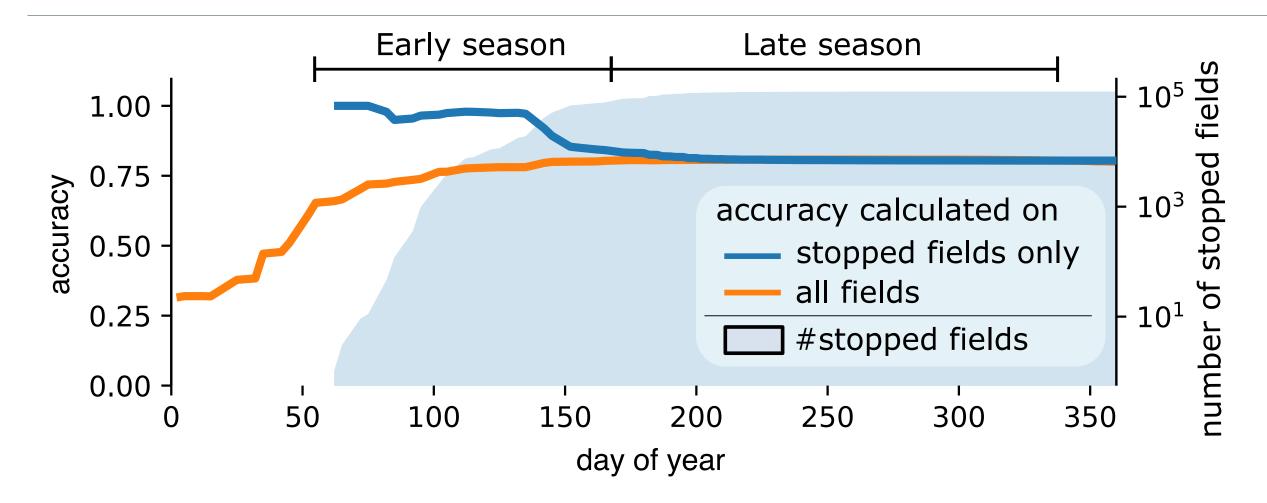
Barley fields are stopped with harvesting

```
2017-04-22
```

2017-06-21

2017-07-16

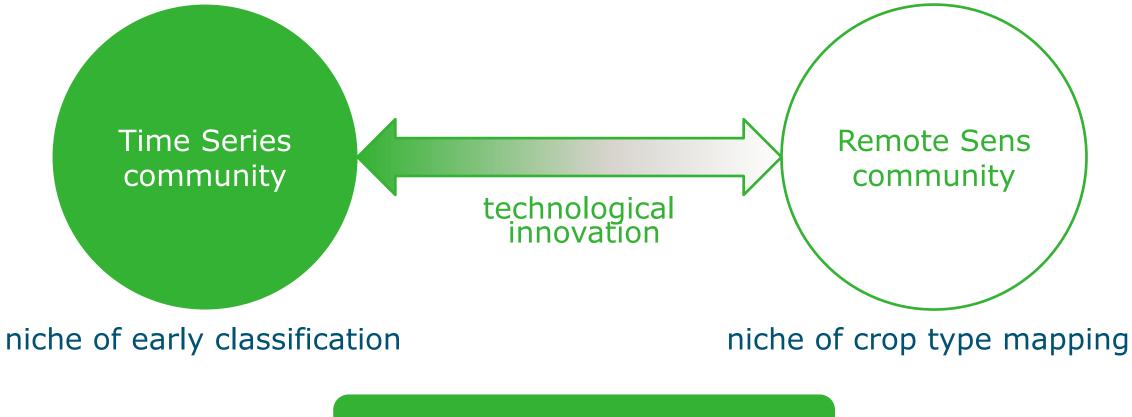
Results: Early Stopped field classifications are more accurate



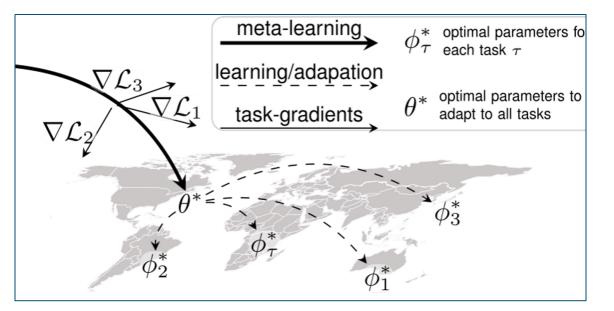
Motivational property of selective prediction models

Takeaways Early Classification

Method from the time series community the runs really well on crop type data



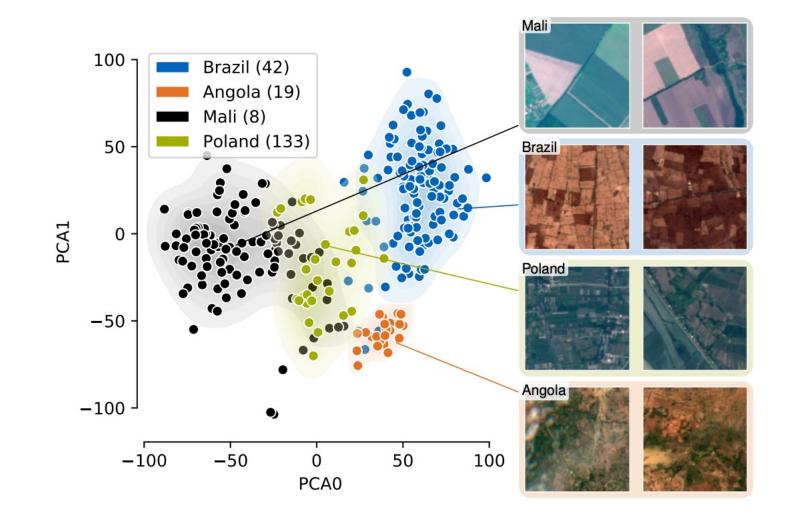
very rewarding, but difficult area to publish



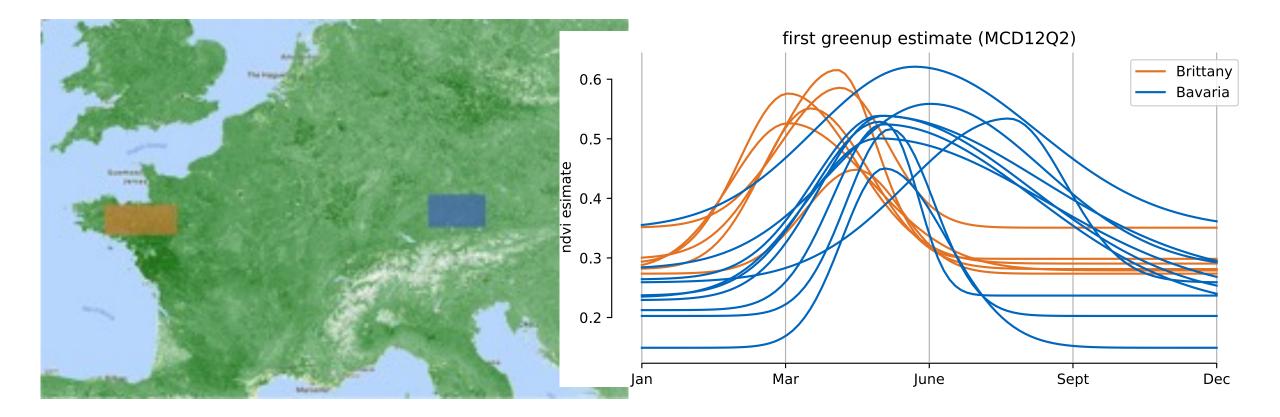
2 Transfer Learning across geographies

Regional-shifts of Vegetation on the Planet

Images of Cropland are very different between regions



Environment drives the changes in plant life cycles



Environment drives farming choices

Different environmental conditions (temperature, precipitation, soil) lead to different farming practices

very region-specific dominant crop types

Example Domain Shifts in Crop-Type Mapping

Regional Domain Shift trained on FRI3 FRE2 RD2 FRD1 FRF3 FR10 FRF2 FRG0 **FRBO** FRC1 FRC2 FRI2 FRK1 model FRK2 trained here FRI1 FRLO FRJ2 accurate inaccurate

Temporal Domain Shift

Accuracy crop type mapping in Germany (Kondmann et al., 2021) with attention-based time series classifier (PSE-TAE; Garnot et al., 2020)

trained on 2018 data

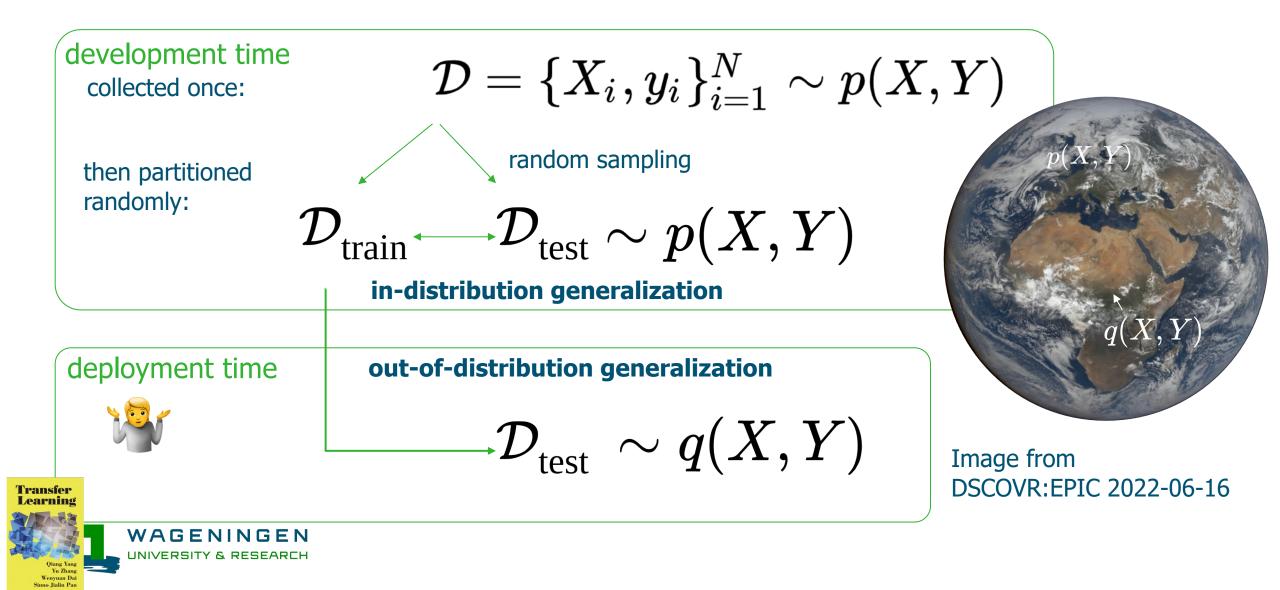
tested on:	2018	2019	
accuracy	78.77%	67.25%	

Kondmann, L., Toker, A., Rußwurm, et al., (2021, August). DENETHOR. In *NeurIPSDatasets and Benchmarks Track*

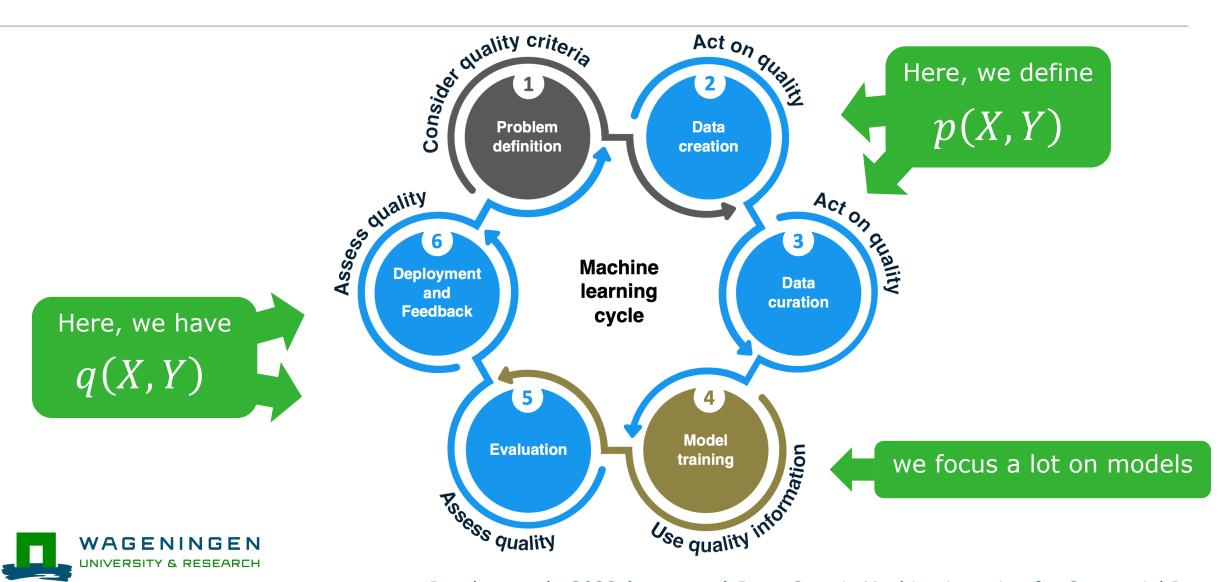
Garnot, V. S. F., et al., (2020). Satellite image time series classification with pixel-set encoders and temporal self-attention.

Problem: testing models in areas with training data is not useful!

Real-world data is not I.I.D.



Domain Shift from a Data-Centric Perspective



Roscher et al., 2023 (to appear) Data-Centric Machine Learning for Geospatial Data

Four canonical types of domain shift

Distribution Shift

 $p(X,Y) \neq q(X,Y)$

discriminative perspective:

1. covariate shift

 $p(X)p(Y|X) \neq \boldsymbol{q(X)}p(Y|X)$

2. label shift

 $p(X)p(Y|X) \neq p(X)q(Y|X)$

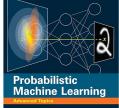
generative perspective: 3. prior shift $p(Y)p(X|Y) \neq q(Y)p(X|Y)$ 4. manifestation shift

manifestation shift

Poland

Angola

 $p(Y)p(X|Y) \neq p(Y)q(X|Y)$

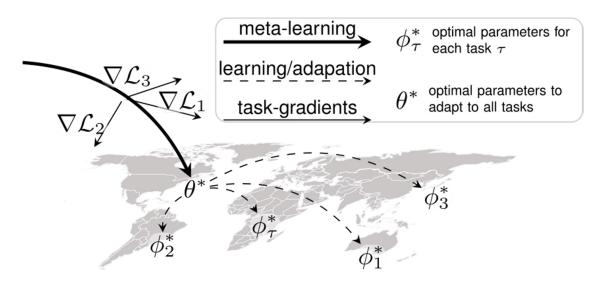


prior shift

Learn-to-Learn Regional Models

concept

Model-agnostic meta-learning (Finn et al., 2017) naturally allows for different data distributions between tasks



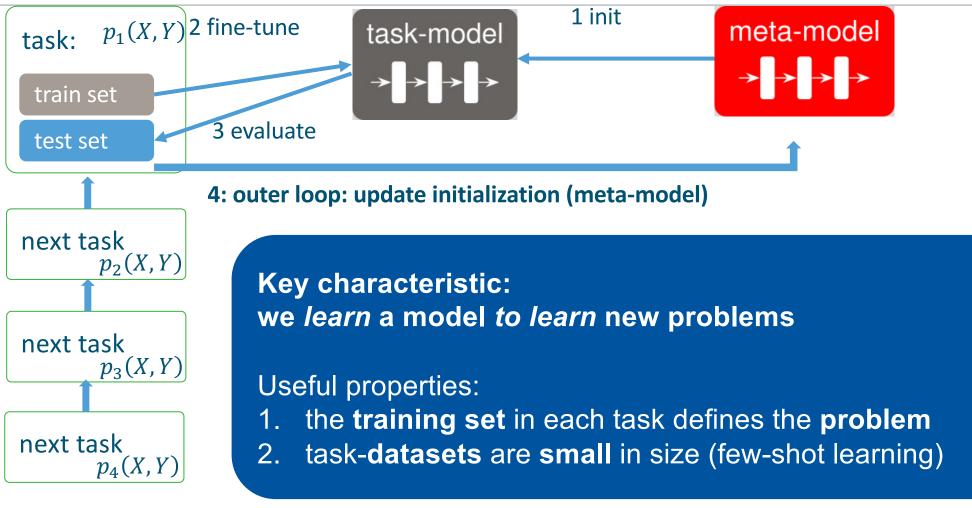
globally distributed land cover



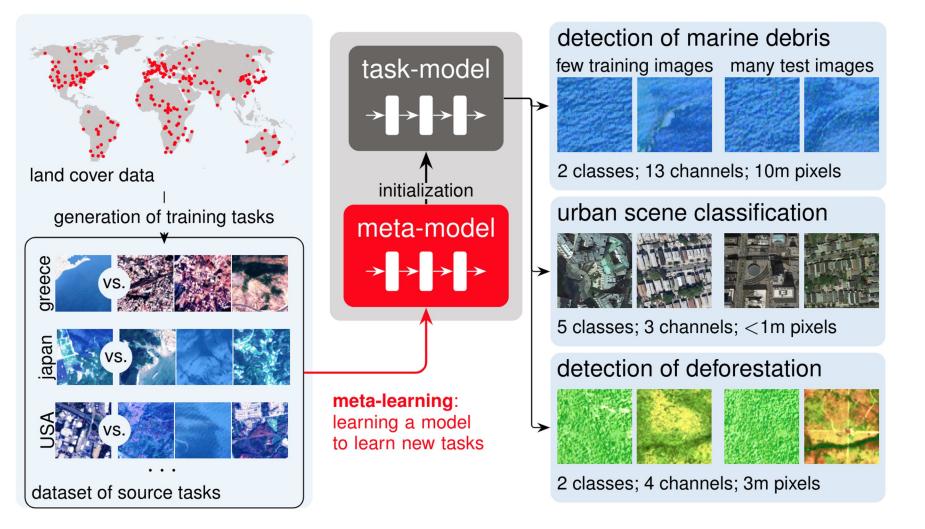
Marc Rußwurm* Sherrie Wang* * equal contribution

Rußwurm & Wang et al., (2020); CVPR Earthvision Workshop (best paper award)

Model-agostic Meta-learning Algorithm (Finn et al., 2017)



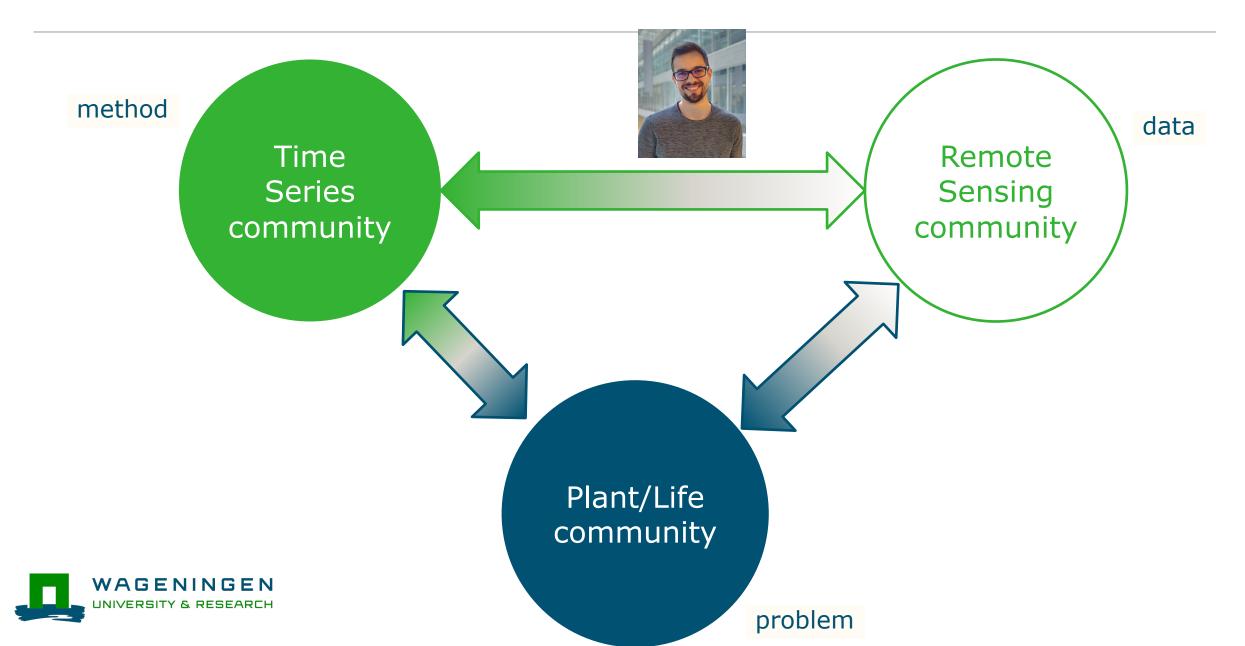
Meta-learning across heterogeneous remote sensing problems



M. Rußwurm, R. Roscher, B. Kellenberger, S. Wang, D. Tuia, (2023) Meta-learning to address diverse Earth observation problems across resolutions. To appear in Nature Communications Earth & Environment

Outlook and future work

Interdisciplinary Approaches



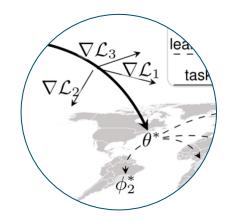
Researching towards these main challenges in future

1: timely in-season classification

selective prediction early time series classification

2: transfer learning across regions

e.g., though model-agnostic meta-learning



Explore these directions systematically in future

Thank you!

My Mission:

to envision and build intelligent systems that help address relevant and meaningful Earth observation problems

Rußwurm, M., Courty, N., Emonet, R., Lefèvre, S., Tuia, D., & Tavenard, R. (2023). End-to-end learned early classification of time series for in-season crop type mapping. *ISPRS Journal of Photogrammetry and Remote Sensing*, *196*, 445-456.

https://www.sciencedirect.com/science/article/pii/S092427162200332X

Source code: http://github.com/marccoru/elects

Contact: marc.russwurm@wur.nl

